## Exercise 47

Show, using implicit differentiation, that any tangent line at a point $P$ to a circle with center $O$ is perpendicular to the radius $O P$.

## Solution

The defining equation for a circle with radius $R$ that's centered at $O$ is

$$
x^{2}+y^{2}=R^{2}
$$

Differentiate both sides with respect to $x$.

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}\left(R^{2}\right)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
2 x+2 y \frac{d y}{d x}=0
$$

Solve for $d y / d x$.

$$
\begin{aligned}
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =-\frac{x}{y}
\end{aligned}
$$

The slope of the tangent line at the point $\left(x_{0}, y_{0}\right)$ is then

$$
m=-\frac{x_{0}}{y_{0}} .
$$



Observe that the slope of line $O P$ is

$$
m_{O P}=\frac{y_{0}}{x_{0}}
$$

the rise over run. These two slopes are negative reciprocals. Therefore, any tangent line at a point $P$ to a circle with center $O$ is perpendicular to the radius $O P$.

